第236章 林场的“告急”
《技术报》
海岛算经九问。
一问曰:
今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目着地取望岛峰,与表末参合。
从后表却行百二十七步,人目着地取望岛峰,亦与表末参合。
问岛高及去表各几何?
答曰:岛高四里五十五步;去表一百二里一百五十步。
术曰:以表高乘表间为实;相多为法,除之。所得加表高,即得岛高。
求前表去岛远近者:以前表却行乘表间为实;相多为法。除之,得岛去表数。
二问曰:
今有望松生山上,不知高下。
立两表齐,高二丈,前后相去五十步,令后表与前表参相直。
从前表却行七步四尺,薄地遥望松末,与表端参合。又望松元,入表二尺八寸。
复从后表却行八步五尺,薄地遥望松末,亦与表端参合。
问松高及山去表各几何?
……
朱高炽每期的技术报都会看,一开始弄出技术报的初衷,是想要融合技术,打造成后世学术报的风格。
但是毕竟时代不同,人们的想法也不同,技术报报社的人们,没有见过后世的学术报。
在他们的理解上,让技术报偏离了朱高炽的初衷,变成了大杂烩,包含万象。
报纸的内容越来越多,导致篇幅也越来越长,每期的报纸,最长的一期,竟然有三四十页,竟然还刊登过一篇杂记。
不过朱高炽没有插手更正。
在他看来,作为上位者,既要引导方向,但又不能管的太细,约束了主动性。
“谁说中国古代没有几何的。”朱高炽放下手中的技术报,忍不住摇了摇头。
海岛算经的作者,是魏晋时期的汉人。
他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。
在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。
在几何方面,提出了“割圆术“,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。
利用割圆术科学地求出了圆周率π≈3.1416的结果。
他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小。
用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”
他计算了3072边形面积并验证了这个值。