import numpy as np
# Neural signal processing and amplification for nanorobots
class NanoRobot:
def __init__(self, id, amplification_threshold=1.2):
self.id = id # Unique identifier for the nanorobot
self.amplification_threshold = amplification_threshold # Minimum signal strength to trigger amplification
self.repair_mode = False # Indicator if repair mode is active
# Capture and analyze the neural signal
def capture_signal(self, signal):
processed_signal = self.filter_noise(signal)
if processed_signal < self.amplification_threshold:
print(f"Robot {self.id}: Weak signal detected, bypassing amplification.")
return processed_signal
return self.amplify_signal(processed_signal)
# Filter noise from the signal using basic thresholding
def filter_noise(self, signal):
noise_reduction_factor = np.random.uniform(0.95, 1.05) # Simulate noise filtering
filtered_signal = signal * noise_reduction_factor
print(f"Robot {self.id}: Signal filtered to {filtered_signal}")
return filtered_signal
# Amplify the signal if it's above a certain threshold
def amplify_signal(self, signal):
amplification_factor = np.random.uniform(1.5, 2.0) # Random amplification within range
amplified_signal = signal * amplification_factor
print(f"Robot {self.id}: Amplified signal to {amplified_signal}")
小主,
return amplified_signal
# Check for cell damage and initiate repair if needed