第三百二十七章 威腾:这人真烦!

“就好像高速飞行的飞机,受限于ns方程的数值求解的精度和效率,它的外形设计我们仍然需要依赖风洞进行大量的实验,数值求解至今不能完全替代风洞实验。”

“飞行在天空的客机为什么不会突然解体?平静的大地为什么不会自行塌陷,流体的扩散效应到底是什么在约束.....”

“这一切在过去对于我们来说是神秘而未知的。”

“但是在今天,是时候来给予它们答桉了!”

......

开场白结束后,徐川摁了一下手中的控制笔,放映出来的ppt文桉翻过一篇新章。

“ok,题外话结束,现在正式进入正题。”

“我相信在来这里之前,在座的各位都已经读过了我的论文。而对于论文中的证明,我将不再完整的复述一遍。”

“今天的报告会,我阐述的重点,将在证明ns方程的关键节点,以及所使用的新数学工具‘微元构造法’上。”

“我也相信,诸位感兴趣的应该是这些东西。”

“话不多说,接下来进入报告......”

“不可压缩 okes方程描述了黏性不可压缩齐次流体的运动.根据 on力学中的质量守恒和动量守恒,我们得到如下方程:

这章没有结束,请点击下一页继续阅读!

【?tu?ν?u +(u·?)u =??p + f,?· u =n∑i=1?iui = 0.......】

随着徐川开始正式进入报告,台下的听众都收拢了精神,全神贯注的盯着离自己最近的幕布,目光落在了反映出来的图片和算式上。

所有人都在仔细地听着,不愿意放过任何一个细节,不愿意错过任何一个瞬间。

“.....一般来说,ns方程的推倒是对流体微团进行受力分析列牛二律。我们可以对流体不做任何假设,那么μ,密度等,同样都会对三个方向有偏导数,方程会非常复杂......”

【3∑i=1(??xi(h(?φ)φxi)= 0).....】

“.....将激波后的流动用无旋流描述,则通过引入位势函数φ,可以将 euler方程组简化为一个二阶非线性偏微分方程,称为位势流方程。”

“.....”

讲台上,徐川手中握着控制笔,看向投影荧幕的同时沉稳有序的讲解着ns方程的关键证明步骤。

对于解决流体方面的难题来说,无论是欧拉方法还是拉格朗日方法都是必备的。

欧拉法是对欧氏空间中的每个点的速度和受力等情况的描述,但是该点对应的流体粒子可能会变更;而拉格朗日法是跟踪每个流体粒子。

这两种方法是过去数学家研究ns方程和流体力学时最常用的手段之一了,并不需要他过于重点讲解,所以徐川也就直接带过了。

而接下来,则是证明ns方程过程重点!

以数学物理体系中微元流体为基础,引入集合的概念,将微分方程、拓扑几何和偏微分方程贯穿。

这是他证明ns方程的关键工具,也是将拓扑几何这个概念引入微分方程和偏微分方程的核心点。

......

大礼堂中,陶哲轩坐在德利涅身边,认真的听着报告。

而当‘微元构造法’出现的那一刻,他更是直接就坐直了身体,目光紧紧的盯着屏幕。

随着徐川的讲解,他眼神中也跳动着炯炯有神的光芒,原本还有着的一丝疑惑,伴随着讲台上的声音逐渐散去。

“原来如此,他真是个天才妖孽!”

弄懂了所有的关键点后,陶哲轩轻轻的靠在了后背上,带着一丝恍然大悟和感叹的声音从他嘴中吐出。

一旁,德利涅听到他的声音后,笑着回道:“相对于我,他早已经是青出于蓝而胜于蓝了。”

闻言,陶哲轩有些好奇看了过来,问道:“我怎么感觉你在报告会之前就已经弄懂了这篇论文的所有的样子?”